Mitochondrial coupling factor 6 is present on the surface of human vascular endothelial cells and is released by shear stress.

نویسندگان

  • T Osanai
  • S Okada
  • K Sirato
  • T Nakano
  • M Saitoh
  • K Magota
  • K Okumura
چکیده

BACKGROUND We showed that mitochondrial coupling factor 6 (CF6), an endogenous inhibitor of prostacyclin synthesis, is present in the systemic circulation as a pressor substance in rats. We investigated the possibility of vascular endothelial cells as a source of circulating CF6. METHODS AND RESULTS We used 2 cultured endothelial cell lines, human umbilical vein endothelial cells (HUVECs) and ECV 304 cells (transformed HUVECs), for this study. Immunofluorescence microscopy of both ECV 304 and HUVECs confirmed the surface-associated immunoreactivity of anti-CF6 antibody on the plasma membrane. The concentration of CF6 in the medium increased gradually with time in both ECV 304 and HUVECs in static conditions. Exposure of ECV 304 and HUVECs to a fluid shear stress enhanced the release of CF6: In ECV 304, the concentration of CF6 in the medium (ng. well(-1). 6 hours(-1)) was 2.1+/-0.8 at baseline, 4.3+/-0.8 after shear at 15 dynes/cm(2), and 57.7+/-8.4 after shear at 25 dynes/cm(2). CF6 contents in the cell homogenate and mitochondria were both significantly increased after exposure of ECV 304 to 6-hour shear at 15 dynes/cm(2), whereas they were unchanged after shear stress at 25 dynes/cm(2). The ratio of CF6 to GAPDH mRNA was enhanced significantly, by 1.8+/-0.2-fold, after 6-hour shear stress at 25 dynes/cm(2). Flow cytometry analysis revealed that the surface-associated CF6 was significantly increased in a 3-hour static condition after the previous exposure of the cells to shear stress for 3 hours. CONCLUSIONS Vascular endothelial cells are a source of CF6, and shear stress regulates the release of the surface-associated CF6.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Purification of Human Adipose-derived Mesenchymal Stem Cells on the Expression of vWF Cell Factor Under Chemical and Mechanical Conditions

Introduction: Human adipose-derived mesenchymal stem cells (hADSCs) are easily accessible in the body, and under appropriate conditions, they can be directed toward various phenotypes. Therefore, hADSCs have been considered as a potential cell source for tissue engineering applications. hADSCs are able to differentiate into endothelial cells which covers the interior surface of vessels, in vi...

متن کامل

Metalloproteinases, Mechanical Factors and Vascular Remodeling

Chronic increases in arterial blood flow elicit an adaptive response of the arterial wall, leading to vessel enlargement and reduction in wall shear stress to physiological baseline value. Release of nitric oxide from endothelial cells exposed to excessive shear is a fundamental step in the remodeling process, and potentially triggers a cascade of events, including growth factor induction and m...

متن کامل

Patterns of Vascular Endothelial Growth Factor Expression in Hematopoietic Malignant Cells

Background and Objective: Vascular endothelial growth factor (VEGF) is a cytokine which is overexpressed in many malignant cancers including leukemia. VEGF plays an important role in tumor invasion and metastasis. Determination of the pattern of VEGF expression in human leukemic cell lines could be useful not only in screening of new antileukemic agents but also to study the mechanism of their ...

متن کامل

Effects of alpha-mangostin on memory senescence induced by high glucose in human umbilical vein endothelial cells

Objective(s): Hyperglycemia induces cellular senescence in various body cells, such as vascular endothelial cells. Since the vessels are highly distributed in the body and nourish all tissues, vascular damages cause diabetes complications such as kidney failure and visual impairment. Alpha-mangostin is a xanthone found in mangosteen fruit with protective effects in met...

متن کامل

Spironolactone Inhibits NADPH Oxidase-Mediated Oxidative Stress and Dysregulation of the Endothelial NO Synthase in Human Endothelial Cells

Accumulating evidence indicates that aldosterone plays a critical role in the mediation of oxidative stress and vascular damage. NADPH oxidase has been recognized as a major source of oxidative stress in vasculature. However, the relation between NADPH oxidase in aldosterone-mediated oxidative stress in endothelial cells remains to be ascertained. The present study aimed to investigate the rel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation

دوره 104 25  شماره 

صفحات  -

تاریخ انتشار 2001